

bit of the distance of the dis

Alewife 604B BMP Development Project

Public Meeting at Arlington Stormwater Awareness series

Patrick Herron Water Quality Monitoring Director Mystic River Watershed Association (MyRWA) patrick@mysticriver.org

Tonight's agenda

- Introduction
 - Water quality impairments in the watershed
 - Project purpose and scope
 - Green infrastructure
- Site identification workshop
- Next steps

INTRODUCTION

Alewife Brook subwatershed

Water quality impairments in the watershed

Undeveloped watershed

Developed landscape - Eutrophication

MyRWA water quality website

HOW IS WATER QUALITY IN THE MYSTIC RIVER WATERSHED?

The Mystic River Watershed Association has been collecting water quality data and studying this question for over a decade and has your answer! Because there are so many measures of water quality, it is best to ask this question in a few different ways. To begin answering this question, choose the path below that interests you most.

Click an image for more information.

Click here for information about the Mystic Monitoring Network.

Mystic River Watershed Association 20 Academy Street, Suite 306, Arlington, MA 02476-6401 (781)316-3438

Photo Credits: Red-Eared Slider Turtle by David Fichter; River Herring by Patrick Herron; Sailing On Upper Mystic Lake by Ken Legler; Great Blue Heron by John Harrison; Mystic River from the

http://mysticriver.org/water-quality-explore/

n Tanasijevic; Sunny Morning after Fresh Snow Storm on the Mystic River by Rich Jarvis; Water

MyRWA water quality website

HOME WATERSHED INFO PROJECTS & PROGRAMS EVENTS PUBLICATIONS MAKE A DIFFERENCE ABOUT US

I LOVE THIS STUFF: MORE WATER QUALITY INFORMATION PLEASE!

More information coming soon!

2013 Raw Data

Select a characteristic from the drop-down menu to view the results for each month: Total Phosphorus

 Learn more about these characteristics and sampling dates at th <u>Monitor Resources</u> page.

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep
Aberjona River (Lower)	0.0480	0.0719	0.0371	0.0390	0.0442	0.0610	0.0567	0.0443	0.0470
Aberjona River (Middle)	0.0587	0.0771	0.0401	0.0327	0.0398	0.0527	0.0384	0.0342	0.0380
Aberjona River (Upper)	0.0628	0.0730		0.0430	0.0473	0.0479	0.0309	0.0560	0.0318
Alewife Brook	0.0893	0.1060	0.0721	0.1023	0.0848	0.1558	0.0938	0.0847	0.1008
Belle Isle Inlet	0.8010	0.1770	0.2010	0.0465	0.1030	0.0740	0.2620	0.1040	0.0875
Chelsea River	0.0310	0.0250	0.0865	0.0200	0.0330	0.0410	0.0530	0.0395	0.0490
Malden River	0.0676	0.0804	0.0519	0.0493	0.1059	0.0743	0.0865	0.0587	0.0813
Meetinghouse Brook	0.0535	0.0424	0.0358	0.0953	0.0365	0.0400		0.0298	0.0853
Mill Brook	0.1172	0.0639	0.0534	0.0584	0.0652	0.0838	0.0652	0.0499	0.0619
Mill Creek	0.7110	0.0585	0.0420	0.0580	0.0530	0.0750	0.0765	0.0910	0.0950
Mystic River (Lower)	0.1890	0.0250	0.0390	0.0520	0.0350	0.0650	0.0560	0.0460	0.0420
Mystic River (Middle)	0.0840	0.0440	0.0370	0.0290	0.0395	0.0540	0.0690	0.0340	0.0600
Mystic River (Upper)	0.0373	0.0362	0.0310	0.0315	0.0197	0.0330	0.0391	0.0278	0.0297
Upper Mystic Lake	0.0409	0.0329	0.0280	0.0252	0.0186	0.0398	0.0427	0.0254	0.0256
Winn Brook	0.0784	0.0845	0.0597	0.0511	0.0709	0.1028	0.0952	0.0970	0.1662

2013 Total Phosphorus (mg/l)

http://mysticriver.org/in-depth-water-quality/

Total Phosphorus source geography in the watershed

Total Phosphorus source geography in Arlington

Project purpose and scope

Why are we engaged in this project?

Problem

- Too many nutrients are being carried off of the land area

Objectives of the project

- Initiate a conversation
- Identify pollution sources
- Identify opportunities
- Develop conceptual designs for two structures
- Share key expertise among municipalities

Green stormwater infrastructure for Arlington

DRAKE VILLAGE

Glossary

- LID (Low Impact Development)
 - Definition: Planning and design approach to restore pre-development hydrology of urban and developing watersheds
- BMPs (Best Management Practices)

• Green (stormwater) infrastructure

Low Impact Development toolbox

- Preserve Existing Vegetation and Soils
- Re-vegetate Impervious Land
- Bioretention swale and basin (rain garden)
- Permeable pavements
- Constructed wetland
- Green Roof
- Street Trees
- Rainwater Harvesting

Bioretention basin / Raingarden Hardy School, Arlington

Raingarden - Hardy School, Arlington

\$3,700 Materials \$830 Labor Design Before **Excavation Volunteers MyRWA Staff Outreach**

(In-kind) (In-kind)

Low Impact Development (LID)

- Characteristics
 - Small scale facilities
 - Manage runoff as close to source as possible
 - Mimic natural processes
 - Slow down, cleanse, infiltrate and reuse rainwater

Benefits

- Reduce localized flooding
- Improve water quality
- Reduce stream erosion
- Improve quality of life
- Cost effectiveness

Bioretention Basin: Green Street Application Curb Extension, Portland OR

the.

Peabody square, Dorchester

PEABODY SQUARE

Bio(retention) Swale MIT Campus – Cambridge , MA

Bioretention Swale - Chelsea, MAss

F

Swale – Berlin (Germany)

1583

.

Bioretention Swale – near Paris (France)

Porous paving

Porous paving

Porous Asphalt Winter Conditions - Welch School, Peabody MA

Permeable Pavers (Interlocking and Grid Types)

Constructed wetlands

Constructed wetlands

Previous project in Horn Pond, Woburn MA

Previous project in Horn Pond, Woburn MA LID Retrofit opportunity: Vegetated swale

BEBE-BEFEEREEEEEE

EFERTER CEREFETERE

11F2FF

LekeAve

Previous project in Horn Pond, Woburn MA LID Retrofit opportunity: Vegetated swale

Previous project in Horn Pond, Woburn MA LID Retrofit opportunity: Vegetated swale

- Water Quality Improvements:
 - 82% Total Suspended Sediment (TSS) removal
 - 60% Total Phosphorus removal (ave.)
 - 40% Total Nitrogen removal (ave.)
 - 70% Metals removal (ave.)
 - 48% Organics removal (ave.)
- Project Benefits:
 - Improved Water Quality
 - Reduced Erosion/ Sedimentation
 - Ease of Maintenance
 - Improved Aesthetics

Estimated Cost: \$15,600.

SITE IDENTIFICATION WORKSHOP

What part of the land area or drainage area (e.g. street, parking lot, development) do you have the greatest concern about stormwater water quality?

<u>e.g.</u>

- heavily used parking lot that drains directly to water body
- significant road surface draining directly without treatment

Stormwater quality concerns

Stormwater quality concerns

Stormwater quality concerns

Most significant flooding issues

Where are the most significant flooding issues in your town?

What public projects will occur within the next five years within the community ?

<u>e.g.</u>

- development or redevelopment of road
- parking lot
- school
- library
- public offices

What private properties, partners or projects will be amenable toward incorporating green infrastructure

<u>e.g.</u>

- Condo development
- Businesses
- Churches
- Non-profits
- Private homeowner

Best opportunities to incorporate green stormwater infrastructures

What do you identify as some of the best opportunities to incorporate green stormwater infrastructures?

Positive siting characteristics could include

- treating a large impervious surface
- placement in a visible location for education
- ease of maintenance
- aesthetics/recreational space
- traffic calming
- heat island reduction
- wildlife habitat
- energy efficiency (green roof)
- costs
- educational/pilot project

Workshop conclusion

NEXT STEPS

Contact:

Patrick Herron Mystic River Watershed Association

patrick@mysticriver.org

(781) 316 3438

Upcoming dates:

January 13 th - 17 th	Prioritization workshop Municipal Staff, key stakeholders, Bioengineering Group			
Feb – March	Site visits by bioengineering Group (5 sites)			
May	Development of conceptual design on two sites			

Bioretention Basin – illustrative section

Bioretention Swale – illustrative section

Porous pavement – illustrative section

Permeable pavers – illustrative 3D-section

Project Schedule

LID Resources

- University of New Hampshire Stormwater Center – unh.edu/unhsc
- US EPA Green Infrastructure
 - water.epa.gov/infrastructure/greeninfrastructure/ DEP
- Low Impact Development Center
 - lowimpactdevelopment.org
- Boston Complete Streets
 - bostoncompletestreets.org
- Boston Water & Sewer Commission: Stormwater BMP Guidance Document (2013)
- Charles River Watershed Association

 http://www.crwa.org/bluecities.html

Site Suitability

- Resource Area (Buffers)
- Terrain (Slope)
- Soils and Subsoils (Infiltration)
- Hydrology (Depth to SHWT)
- Contamination
- Utilities

Maintenance

	Bioretention basin	Bioretention swale	Constructed wetland	Porous pavement	Permeable pavers	
Capital cost	\$8 - \$12/sq ft	\$5 - \$10/linear ft	\$0.75-\$2.00/sq ft (\$30k – \$80k/acre)	\$2-\$3/sq ft	\$8 - \$12/sq ft	
	 Confirm plant g Irrigate during p Remove invasiv Remove sedime inspect drainage Swales: mow ar 	rowth plant establishment e species ent and debris as nece structures nd remove vegetation	 Periodic inspection during and after rain events to confirm proper drainage Vacuum sweeping 2-4 times per year Annual inspection of paver blocks for deterioration Replace gravel as necessary 			
Mainten ance						

LID BMP Costs

- Design
- Testing and Permitting
- Construction
- Maintenance
- Monitoring

